169 research outputs found

    A novel homozygous SLC2A9 mutation associated with renal-induced hypouricemia

    Get PDF
    Hereditary renal hypouricemia (RHUC) is a genetically heterogenous disorder characterized by defective uric acid (UA) reabsorption resulting in hypouricemia and increased fractional excretion of UA; acute kidney injury (AKI) and nephrolithiasis are recognized complications. Type 1 (RHUC1) is caused by mutations in the SLC22A12 gene, whereas RHUC2 is caused by mutations in the SLC2A9 gene. Patient ethnicity is diverse but only few Caucasian families with an SLC2A9 mutation have been reported. The current report describes the clinical history, biochemical and molecular genetics findings of a native Austrian family with RHUC2. The propositus presented with 2 episodes of exercise-induced AKI and exhibited profound hypouricemia. Mutational screening of the SLC22A12 and SLC2A9 genes was performed. The molecular analyses revealed the homozygous c.512G>A transition that leads to the p.Arg171His missense substitution in SLC2A9, confirming the diagnosis of RHUC2. Segregation study of the causal mutation revealed that the mother and elder sister were heterozygous carriers, whereas the younger sister was found to be homozygous. We report the identification of a novel mutation in SLC2A9 as the cause of RHUC2 in a native Austrian family. We show that glucose transporter 9 mutations cause severe hypouricemia in homozygous individuals and confirm the high risk of AKI in male individuals harbouring these mutations. In our literature review, we provide an overview of the putative underlying pathophysiology, potential renal complications, findings on kidney biopsy as well as potential long-time renal sequela

    Expanding the clinical and mutational spectrum of B4GALT7-spondylodysplastic Ehlers-Danlos syndrome

    Get PDF
    Spondylodysplastic EDS (spEDS) is a rare connective tissue disorder that groups the phenotypes caused by biallelic B4GALT7, B3GALT6, and SLC39A13 mutations. In the 2017 EDS nosology, minimal criteria (general and gene-specific) for a clinical suspicion of spEDS have been proposed, but molecular analysis is required to reach a definite diagnosis. The majority of spEDS patients presented with short stature, skin hyperextensibility, facial dysmorphisms, peculiar radiological findings, muscle hypotonia and joint laxity and/or its complications. To date only 7 patients with β4GALT7-deficiency (spEDS-B4GALT7) have been described and their clinical data suggested that, in addition to short stature and muscle hypotonia, radioulnar synostosis, hypermetropia, and delayed cognitive development might be a hallmark of this specific type of spEDS. Additional 22 patients affected with an overlapping phenotype, i.e., Larsen of Reunion Island syndrome, all carrying a homozygous B4GALT7 mutation, are also recognized. Herein, we report on a 30-year-old Moroccan woman who fitted the minimal criteria to suspect spEDS, but lacked radioulnar synostosis and intellectual disability and presented with neurosensorial hearing loss and limb edema of lymphatic origin. Sanger sequencing of B4GALT7 was performed since the evaluation of the spEDS gene-specific minor criteria suggested this specific subtype. Mutational screening revealed the homozygous c.829G>T, p.Glu277* pathogenetic variant leading to aberrant splicing. Our findings expand both the clinical and mutational spectrum of this ultrarare connective tissue disorder. The comparison of the patient's features with those of the other spEDS and Larsen of Reunion Island syndrome patients reported up to now offers future perspectives for spEDS nosology and clinical research in this field

    Transcriptome-wide expression profiling in skin fibroblasts of patients with joint hypermobility syndrome/ehlers-danlos syndrome hypermobility type

    Get PDF
    Joint hypermobility syndrome/Ehlers-Danlos syndrome hypermobility type (JHS/EDS-HT), is likely the most common systemic heritable connective tissue disorder, and is mostly recognized by generalized joint hypermobility, joint instability complications, minor skin changes and a wide range of satellite features. JHS/EDS-HT is considered an autosomal dominant trait but is still without a defined molecular basis. The absence of (a) causative gene(s) for JHS/EDS-HT is likely attributable to marked genetic heterogeneity and/or interaction of multiple loci. In order to help in deciphering such a complex molecular background, we carried out a comprehensive immunofluorescence analysis and gene expression profiling in cultured skin fibroblasts from five women affected with JHS/EDS-HT. Protein study revealed disarray of several matrix structural components such as fibrillins, tenascins, elastin, collagens, fibronectin, and their integrin receptors. Transcriptome analysis indicated perturbation of different signaling cascades that are required for homeostatic regulation either during development or in adult tissues as well as altered expression of several genes involved in maintenance of extracellular matrix architecture and homeostasis (e.g., SPON2, TGM2, MMP16, GPC4, SULF1), cell-cell adhesion (e.g., CDH2, CHD10, PCDH9, CLDN11, FLG, DSP), immune/inflammatory/pain responses (e.g., CFD, AQP9, COLEC12, KCNQ5, PRLR), and essential for redox balance (e.g., ADH1C, AKR1C2, AKR1C3, MAOB, GSTM5). Our findings provide a picture of the gene expression profile and dysregulated pathways in JHS/EDS-HT skin fibroblasts that correlate well with the systemic phenotype of the patients

    GLUT10 deficiency leads to oxidative stress and non-canonical αvβ3 integrin-mediated TGFβ signalling associated with extracellular matrix disarray in arterial tortuosity syndrome skin fibroblasts

    Get PDF
    Arterial tortuosity syndrome (ATS) is an autosomal recessive connective tissue disorder caused by loss-of-function mutations in SLC2A10, which encodes facilitative glucose transporter 10 (GLUT10). The role of GLUT10 in ATS pathogenesis remains an enigma, and the transported metabolite(s), i.e. glucose and/or dehydroascorbic acid, have not been clearly elucidated. To discern the molecular mechanisms underlying the ATS aetiology, we performed gene expression profiling and biochemical studies on skin fibroblasts. Transcriptome analyses revealed the dysregulation of several genes involved in TGFβ signalling and extracellular matrix (ECM) homeostasis as well as the perturbation of specific pathways that control both the cell energy balance and the oxidative stress response. Biochemical and functional studies showed a marked increase in ROS-induced lipid peroxidation sustained by altered PPARγ function, which contributes to the redox imbalance and the compensatory antioxidant activity of ALDH1A1. ATS fibroblasts also showed activation of a non-canonical TGFβ signalling due to TGFBRI disorganization, the upregulation of TGFBRII and connective tissue growth factor, and the activation of the αvβ3 integrin transduction pathway, which involves p125FAK, p60Src and p38 MAPK. Stable GLUT10 expression in patients' fibroblasts normalized redox homeostasis and PPARγ activity, rescued canonical TGFβ signalling and induced partial ECM re-organization. These data add new insights into the ATS dysregulated biological pathways and definition of the pathomechanisms involved in this disorder

    Differential Enzymatic Activity of Rat ADAR2 Splicing Variants Is Due to Altered Capability to Interact with RNA in the Deaminase Domain

    Get PDF
    In mammals, adenosine (A) to inosine (I) RNA editing is performed by adenosine deaminases acting on RNA (ADAR), ADAR1 and ADAR2 enzymes, encoded by mRNAs that might undergo splicing process. In rat, two splicing events produce several isoforms of ADAR2, called ADAR2a, ADAR2b, ADAR2e, and ADAR2f, but only ADAR2a and ADAR2b are translated into an active protein. In particular, they differ for ten amino acids located in the catalytic domain of ADAR2b. Here, we focused on these two isoforms, analyzing the splicing pattern and their different function during rat neuronal maturation. We found an increase of editing levels in cortical neurons overexpressing ADAR2a compared to those overexpressing ADAR2b. These results indicate ADAR2a isoform as the most active one, as reported for the homologous human short variant. Furthermore, we showed that the differential editing activity is not due to a different dimerization of the two isoforms; it seems to be linked to the ten amino acids loop of ADAR2b that might interfere with RNA binding, occupying the space volume in which the RNA should be present in case of binding. These data might shed light on the complexity of ADAR2 regulations

    Recurrent exercise-induced acute renal failure in a young Pakistani man with severe renal hypouricemia and SLC2A9 compound heterozygosity.

    Get PDF
    BACKGROUND: Familial renal hypouricemia (RHUC) is a hereditary disease characterized by hypouricemia, high renal fractional excretion of uric acid (FE-UA) and can be complicated by acute kidney failure and nephrolithiasis. Loss-of-function mutations in the SLC22A12 gene cause renal hypouricemia type 1 (RHUC1), whereas renal hypouricemia type 2 (RHUC2) is caused by mutations in the SLC2A9 gene. CASE PRESENTATION: We describe a 24-year-old Pakistani man who was admitted twice to our hospital for severe exercise-induced acute renal failure (EIARF), abdominal pain and fever; he had very low serum UA levels (0.2 mg/dl the first time and 0.09 mg/dl the second time) and high FE-UA (200% and 732% respectively), suggestive of RHUC. Mutational analyses of both urate transporters revealed a new compound heterozygosity for two distinct missense mutations in the SLC2A9 gene: p.Arg380Trp, already identified in heterozygosity, and p.Gly216Arg, previously found in homozygosity or compound heterozygosity in some RHUC2 patients. Compared with previously reported patients harbouring these mutations, our proband showed the highest FE-UA levels, suggesting that the combination of p.Arg380Trp and p.Gly216Arg mutations most severely affects the renal handling of UA. CONCLUSIONS: The clinical and molecular findings from this patient and a review of the literature provide new insights into the genotype-phenotype correlation of this disorder, supporting the evidence of an autosomal recessive inheritance pattern for RHUC2. Further investigations into the functional properties of GLUT9, URAT1 and other urate transporters are required to assess their potential research and clinical implications

    Arterial tortuosity syndrome in two Italian paediatric patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arterial tortuosity syndrome (ATS) (OMIM #208050) is a rare autosomal recessive connective tissue disorder characterized by tortuosity and elongation of the large and medium-sized arteries, propensity to aneurysms formation, vascular dissection, and pulmonary arteries stenosis. ATS is caused by mutations in <it>SLC2A10 </it>gene, encoding for the facilitative glucose transporter 10 (GLUT10). So far, 17 <it>SLC2A10 </it>mutations have been reported in 32 families, two of which were Italian with a total of five patients. Here we present the clinical and molecular characterization of two novel Italian paediatric ATS patients.</p> <p>Methods</p> <p>The exons and intronic flanking regions of <it>SLC2A10 </it>gene were amplified and direct sequencing was performed.</p> <p>Results</p> <p>In both patients, the involvement of major- and medium-sized arteries was characteristic; the nonvascular connective tissue manifestations were mild and not pathognomic of the disorder. Both patients, born from non-consanguineous parents, were heterozygous for two different <it>SLC2A10 </it>mutations, three of which were recurrent and one was novel (p.Arg231Trp). This mutation is localized at the endofacial loop between the transmembrane domains 6 and 7 of GLUT10.</p> <p>Conclusion</p> <p>Two novel ATS patients were characterized at clinical and molecular level. Overall, four ATS unrelated families are known in Italy so far. Though ATS clinical delineation improved in the last years, further works in the comprehension of disease presentation and complications onset, particularly in paediatric age, and on ATS molecular basis are needed to add new insights for diagnosis and prevention strategies for related complications.</p

    Small fiber neuropathy is a common feature of Ehlers-Danlos syndromes

    Get PDF
    To investigate the involvement of small nerve fibers in Ehlers-Danlos syndrome (EDS). Patients diagnosed with EDS underwent clinical, neurophysiologic, and skin biopsy assessment. We recorded sensory symptoms and signs and evaluated presence and severity of neuropathic pain according to the Douleur Neuropathique 4 (DN4) and ID Pain questionnaires and the Numeric Rating Scale (NRS). Sensory action potential amplitude and conduction velocity of sural nerve was recorded. Skin biopsy was performed at distal leg and intraepidermal nerve fiber density (IENFD) obtained and referred to published sex- and age-adjusted normative reference values. Our cohort included 20 adults with joint hypermobility syndrome/hypermobility EDS, 3 patients with vascular EDS, and 1 patient with classic EDS. All except one patient had neuropathic pain according to DN4 and ID Pain questionnaires and reported 7 or more symptoms at the Small Fiber Neuropathy Symptoms Inventory Questionnaire. Pain intensity was moderate (NRS ≥4 and <7) in 8 patients and severe (NRS ≥7) in 11 patients. Sural nerve conduction study was normal in all patients. All patients showed a decrease of IENFD consistent with the diagnosis of small fiber neuropathy (SFN), regardless of the EDS type. SFN is a common feature in adults with EDS. Skin biopsy could be considered an additional diagnostic tool to investigate pain manifestations in EDS

    Loeys-Dietz syndrome type I and type II: clinical findings and novel mutations in two Italian patients

    Get PDF
    Loeys-Dietz syndrome (LDS) is a rare autosomal dominant disorder showing the involvement of cutaneous, cardiovascular, craniofacial, and skeletal systems. In particular, LDS patients show arterial tortuosity with widespread vascular aneurysm and dissection, and have a high risk of aortic dissection or rupture at an early age and at aortic diameters that ordinarily are not predictive of these events. Recently, LDS has been subdivided in LDS type I (LDSI) and type II (LDSII) on the basis of the presence or the absence of cranio-facial involvement, respectively. Furthermore, LDSII patients display at least two of the major signs of vascular Ehlers-Danlos syndrome. LDS is caused by mutations in the transforming growth factor (TGF) beta-receptor I (TGFBR1) and II (TGFBR2) genes. The aim of this study was the clinical and molecular characterization of two LDS patients
    • …
    corecore